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Section 1

Machine Learning: what and why?
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Subsection 1

Real cases
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Real cases

I Pro-active customer care in telecommunication

I Collision detection in insurance
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What is Machine Learning?

Definition
Machine Learning is the science of getting computer to learn
without being explicitly programmed.
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In practice

A set of mathematical and statistical tools for:

I building a model which allows to predict an output, given an
input (supervised learning)

I learn relationships and structures in data (unsupervised
learning)
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Machine Learning everyday

Example problem: spam

Discriminate between spam and non-spam emails.

Figure: Spam filtering in Gmail.
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Machine Learning everyday

Example problem: image understanding

Recognize objects in images.

Figure: Object recognition in Google Photos.
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Why ML/DM “today”?

I we collect more and more data (big data)

I we have more and more computational power

Figure: From http://www.mkomo.com/cost-per-gigabyte-update.

http://www.mkomo.com/cost-per-gigabyte-update
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ML/DM is popular!

Figure: Popular areas of interest, from the Skill Up 2016: Developer Skills
Report2

1https://techcus.com/p/r1zSmbXut/

top-5-highest-paying-programming-languages-of-2016/.
2https://techcus.com/p/r1zSmbXut/

top-5-highest-paying-programming-languages-of-2016/.

https://techcus.com/p/r1zSmbXut/top-5-highest-paying-programming-languages-of-2016/
https://techcus.com/p/r1zSmbXut/top-5-highest-paying-programming-languages-of-2016/
https://techcus.com/p/r1zSmbXut/top-5-highest-paying-programming-languages-of-2016/
https://techcus.com/p/r1zSmbXut/top-5-highest-paying-programming-languages-of-2016/
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What does the Machine Learning practitioner?

Be able to:

1. design

2. implement

3. assess experimentally

an end-to-end Machine Learning or Data Mining system.

I Which is the problem to be solved? Which are the input and
output? Which are the most suitable algorithms? How should
data be prepared? Does computation time matter?

I Write some code!

I How to measure solution quality? How to compare solutions?
Is my solution general?
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Subsection 2

Motivating example
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The amateur botanist friend

He likes to collect Iris plants. He “realized” that there are 3
species, in particular, that he likes: Iris setosa, Iris virginica, and
Iris versicolor. He’d like to have a tool to automatically classify
collected samples in one of the 3 species.

Figure: Iris versicolor.

How to help him?
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Let’s help him

I Which is the problem to be solved?

I Assign exactly one specie to a sample.

I Which are the input and output?

I Output: one species among I. setosa, I. virginica, I. versicolor.
I Input: the plant sample. . .

I a description in natural language?
I a digital photo?
I DNA sequences?
I some measurements of the sample!
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Iris: input and output

Figure: Sepal and petal.

Input: sepal length and width, petal length and width (in cm)
Output: the class
Example: (5.1, 3.5, 1.4, 0.2)→ I. setosa
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Other information

The botanist friend asked a senior botanist to inspect several
samples and label them with the corresponding species.
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Species

5.1 3.5 1.4 0.2 I. setosa
4.9 3.0 1.4 0.2 I. setosa
7.0 3.2 4.7 1.4 I. versicolor
6.0 2.2 5.0 1.5 I. virginica
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Notation and terminology

I Sepal length, sepal width, petal length, and petal width are
input variables (or independent variables, or features, or
attributes).

I Species is the output variable (or dependent variable, or
response).
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Notation and terminology

X =


x1,1 x1,2 · · · x1,p
x2,1 x2,2 · · · x2,p

...
...

. . .
...

xn,1 xn,2 · · · xn,p

 y =


y1
y2
...
yn


I xT1 = (x1,1, x1,2, . . . , x1,p) is an observation (or instance, or

data point), composed of p variable values;

y1 is the
corresponding output variable value

I xT2 = (x1,2, x2,2, . . . , xn,2) is the vector of all the n values for
the 2nd variable (X2).
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Iris: visual interpretation

Simplification: forget petal and
I. virginica → 2 variables, 2
species (binary classification
problem).

I Problem: given any new
observation, we want to
automatically assign the
species.

I Sketch of a possible
solution:

1. learn a model (classifier)
2. “use” model on new

observations
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Section 2

Tree-based methods
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The carousel robot attendant

Problem: replace the carousel attendant with a robot which
automatically decides who can ride the carousel.
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Carousel: data

Observed human attendant’s decisions.

5 10 15
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Age a [year]
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]

Cannot ride
Can ride

How can the robot take
the decision?

I if younger than 10 →
can’t!

I otherwise:

I if shorter than 120
→ can’t!

I otherwise → can!

Decision tree!

a < 10

T

h < 120

T F

F
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How to build a decision tree

Dividi-et-impera (recursively):

I find a cut variable and a cut value

I for left-branch, dividi-et-impera

I for right-branch, dividi-et-impera
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How to build a decision tree: detail

Recursive binary splitting

function BuildDecisionTree(X, y)
if ShouldStop(y) then

ŷ ← most common class in y
return new terminal node with ŷ

else
(i , t)← BestBranch(X, y)
n← new branch node with (i , t)
append child BuildDecisionTree(X|xi<t , y|xi<t) to n
append child BuildDecisionTree(X|xi≥t , y|xi≥t) to n
return n

end if
end function

I Recursive binary splitting

I Top down (start from the “big” problem)
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Best branch

function BestBranch(X, y)
(i?, t?)← arg mini ,t E (y|xi≥t) + E (y|xi<t)
return (i?, t?)

end function

Classification error on subset:

E (y) =
|{y ∈ y : y 6= ŷ}|

|y|
ŷ = the most common class in y

I Greedy (choose split to minimize error now, not in later steps)
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Best branch

(i?, t?)← arg min
i ,t

E (y|xi≥t) + E (y|xi<t)

The formula say what is done, not how is done!

Q: different “how” can differ? how?
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Stopping criterion

function ShouldStop(y)
if y contains only one class then

return true
else if |y| < kmin then

return true
else

return false
end if

end function

Other possible criterion:

I tree depth larger than dmax
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Categorical independent variables

I Trees can work with categorical variables

I Branch node is xi = c or xi ∈ C ′ ⊂ C (c is a class)

I Can mix categorical and numeric variables
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Stopping criterion: role of kmin

Suppose kmin = 1 (never stop for y size)

5 10 15
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Cannot ride
Can ride h < 120

a < 9.0

a < 9.6

a < 9.1

a < 9.4

a < 10

Q: what’s wrong?
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Tree complexity

When the tree is “too complex”

I less readable/understandable/explicable

I maybe there was noise into the data

Q: what’s noise in carousel data?

Tree complexity issue is not related (only) with kmin
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Tree complexity: other interpretation

I maybe there was noise into the data

The tree fits the learning data too much:

I it overfits (overfitting)

I does not generalize (high variance: model varies if learning
data varies)
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High variance

“model varies if learning data varies”: what? why data varies?
I learning data is about the system/phenomenon/nature S

I a collection of observations of S
I a point of view on S

I learning is about understanding/knowing/explaining S

I if I change the point of view on S , my knowledge about S
should remain the same!
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Spotting overfitting

Model complexity

E
rr

or

Learning error

Test error: error on unseen data
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k-fold cross-validation

Where can I find “unseen data”? Pretend to have it!

1. split learning data (X and y) in k equal slices (each of n
k

observations/elements)

2. for each split (i.e., each i ∈ {1, . . . , k} )

2.1 learn on all but k-th slice
2.2 compute classification error on unseen k-th slice

3. average the k classification errors

In essence:

I can the learner generalize on available data?

I how the learned artifact will behave on unseen data?
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k-fold cross-validation

folding 1 accuracy1

folding 2 accuracy2

folding 3 accuracy3

folding 4 accuracy4

folding 5 accuracy5

accuracy =
1

k

i=k∑
i=1

accuracyi

Or with classification error rate or any other meaningful
(effectiveness) measure

Q: how should data be split?
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Subsection 1

Regression trees
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Regression with trees

Trees can be used for regression, instead of classification.

decision tree vs. regression tree
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Tree building: decision → regression

function BuildDecisionTree(X, y)
if ShouldStop(y) then

ŷ ← most common class in y
return new terminal node with ŷ

else
(i , t)← BestBranch(X, y)
n← new branch node with (i , t)
append child BuildDecisionTree(X|xi<t , y|xi<t) to n
append child BuildDecisionTree(X|xi≥t , y|xi≥t) to n
return n

end if
end function

Q: what should we change?
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Interpretation
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Regression and overfitting

Image from F. Daolio
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Trees in summary

Pros:

N easily interpretable/explicable

N learning and regression/classification easily understandable

N can handle both numeric and categorical values

Cons:

H not so accurate (Q: always?)
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Tree accuracy?

Image from An Introduction to Statistical Learning
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Subsection 2

Trees aggregation
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Weakness of the tree

0 20 40 60 80 100

15

20

25

30

Small tree:

I low complexity

I will hardly fit the “curve”
part

I high bias, low variance

Big tree:

I high complexity

I may overfit the noise on the
right part

I low bias, high variance
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The trees view

Small tree:

I “a car is something that
moves”

Big tree:

I “a car is a made-in-Germany
blue object with 4 wheels, 2
doors, chromed fenders,
curved rear enclosing
engine”
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Big tree view

A big tree:

I has a detailed view of the learning data (high complexity)

I “trusts too much” the learning data (high variance)

What if we “combine” different big tree views and ignore details
on which they disagree?
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Wisdom of the crowds

What if we “combine” different big tree views and ignore details
on which they disagree?

I many views

I independent views

I aggregation of views

≈ the wisdom of the crowds: a collective opinion may be better
than a single expert’s opinion
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Wisdom of the trees

I many views

I just use many trees

I independent views

I ??? learning is deterministic: same data ⇒ same tree ⇒ same
view

I aggregation of views

I just average prediction (regression) or take most common
prediction (classification)
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Independent views

Independent views ≡ different points of view ≡ different learning
data

But we have only one learning data!
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Independent views: idea!

Like in cross-fold, consider only a part of the data, but:

I instead of a subset

I a sample with repetitions

X = (xT1 xT2 xT3 xT4 xT5 ) original learning data

X1 = (xT1 xT5 xT3 xT2 xT5 ) sample 1

X2 = (xT4 xT2 xT3 xT1 xT1 ) sample 2

Xi = . . . sample i

I (y omitted for brevity)
I learning data size is not a limitation (differently than with

subset)

Bagging of trees (bootstrap, more in general)
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Tree bagging

When learning:

1. Repeat B times

1.1 take a sample of the learning data
1.2 learn a tree (unpruned)

When predicting:

1. Repeat B times

1.1 get a prediction from ith learned tree

2. predict the average (or most common) prediction

For classification, other aggregations can be done: majority voting
(most common) is the simplest
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How many trees?

B is a parameter:

I when there is a parameter, there is the problem of finding a
good value

I remember kmin, depth (Q: impact on?)

I it has been shown (experimentally) that
I for “large” B, bagging is better than single tree
I increasing B does not cause overfitting
I (for us: default B is ok! “large” ≈ hundreds)

Q: how better? at which cost?
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Bagging
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Independent view: improvement

Despite being learned on different samples, bagging trees may be
correlated, hence views are not very independent

I e.g., one variable is much more important than others for
predicting (strong predictor)

Idea: force point of view differentiation by “hiding” variables
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Random forest

When learning:

1. Repeat B times

1.1 take a sample of the learning data
1.2 consider only m on p independent variables
1.3 learn a tree (unpruned)

When predicting:

1. Repeat B times

1.1 get a prediction from ith learned tree

2. predict the average (or most common) prediction

I (observations and) variables are randomly chosen. . .

I . . . to learn a forest of trees

Q: are missing variables a problem?
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Random forest: parameter m

How to choose the value for m?

I m = p → bagging
I it has been shown (experimentally) that

I m does not relate with overfitting
I m =

√
p is good for classification

I m = p
3 is good for regression

I (for us, default m is ok!)
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Random forest

Experimentally shown: one of the “best” multi-purpose supervised
classification methods

I Manuel Fernández-Delgado et al. “Do we need hundreds of
classifiers to solve real world classification problems”. In: J.
Mach. Learn. Res 15.1 (2014), pp. 3133–3181

but. . .



59/69

No free lunch!

“Any two optimization algorithms are equivalent when their
performance is averaged across all possible problems”

I David H Wolpert. “The lack of a priori distinctions between
learning algorithms”. In: Neural computation 8.7 (1996),
pp. 1341–1390

Why free lunch?

I many restaurants, many items on menus, many possibly prices
for each item: where to go to eat?

I no general answer

I but, if you are a vegan, or like pizza, then a best choice could
exist

Q: problem? algorithm?
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Nature of the prediction

Consider classification:
I tree → the class

I “virginica” is just “virginica”

I forest → the class, as resulting from a voting

I “241 virginica, 170 versicolor, 89 setosa” is different than “478
virginica, 10 versicolor, 2 setosa”

Is this information useful/exploitable?
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Confidence/tunability

Voting outcome:

I in classification, a measure of confidence of the decision

I in binary classification, voting threshold can be tuned to
adjust bias towards one class (sensitivity)

Q: in regression?
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Subsection 3

Binary classification
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Binary classification

Consider the problem of classifying a person (’s data) as suffering
or not suffering from a disease X.

I positive: an observation of “suffering” class

I negative: an observation of “not suffering” class

In other problems, positive may mean a different thing: define it!
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FPR, FNR

Given some labeled data and a classifier for the disease X problem,
we can measure:

I the number of negative observations wrongly classified as
positives: False Positives (FP)

I the number of positive observations wrongly classified as
negatives: False Negatives (FN)

To decouple FP, FN from data size:

FPR =
FP

N
=

FP

FP + TN

FNR =
FN

P
=

FN

FN + TP
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Accuracy and error rate

Accuracy = 1− Error Rate

Error Rate =
FN + FP

P + N

Q: Error Rate
?
= FPR+FNR

2
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FPR, FNR and sensitivity

I Suppose FPR = 0.06, FNR = 0.04 with threshold set to 0.5
(default for RF)

I One could be interested in “limiting” the FNR. . .

Experimentally:
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Receiver operating characteristic (ROC)

FPR, FNR vs. t
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I Equal error rate (EER)
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ROC and comparison
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Random classifier

C2 is better than C1: how much?

I EER

I Area under the curve (AUC)



69/69

Bagging/RF/boosting in summary

Tree Bagging RF

interpretability N
numeric/categorical N N N
accuracy H N
test error estimate N N
variable importance N N
confidence/tunability N N
fast to learn N∗

(almost) non-parametric N N
∗: Q: how faster? when? does it matter?
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