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Motivation

▪ Carbon dioxide emissions from shipping were equal to 2.7% of the global human-made emissions in 2007 
(source: IMO) are expected to rise by as much as 2 to 3 times by 2050 if no action is taken

▪ IMO set mandatory measures to reduce emissions of greenhouse gases, with the Energy Efficiency Design 
Index (EEDI) for new ships, and the Ship Energy Efficiency Management Plan (SEEMP) for all ships (2013)

▪ Not only industries, but also Navies demand for more efficient and safer ships, with optimized performances 
with respect to range, cruise/flank speeds, payload, and operability in high sea-states

▪ Climate changes will likely induce high sea states with large environmental uncertainties involved 
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Context

https://www.youtube.com/watch?v=Sx57-LnuuFs
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Build-and-Test Approach

31/07/2019Webinar4

Design

Build

Test



Simulation-Based Design Optimization (Process Digitalization)
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Simulation-Based Design Optimization
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Design-space Dimensionality Reduction via Machine Learning
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Design-space dimensionality

Potential design improvements

Difficulty of exploration and computational cost

M.C. Escher, Relativity, 1953

“Curse of dimensionality”

The optimization/analysis algorithmic performance 
deteriorates with increasing dimension

(Bellman, 1957)



Design-space Dimensionality Reduction via Machine Learning

▪ Offline machine learning approaches have been developed with the aim of assessing and 
reducing the design-space dimensionality before optimization is performed

▪ Dimensionality reduction of shape modification vector
➢ Karhunen-Loève expansion/principal component analysis (PCA)

➢ Local principal component analysis (LPCA)

➢ Kernel principal component analysis (KPCA)

➢ Deep autoecoders (DAE)
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o Diez, M., Campana, E.F. and Stern, F., 2015. Design-space dimensionality reduction in shape optimization by Karhunen–Loève expansion. Computer Methods in 
Applied Mechanics and Engineering, 283, pp.1525-1544.

o Diez, M., Serani, A., Stern, F. and Campana, E.F., 2016, September. Combined geometry and physics based method for design-space dimensionality reduction in 
hydrodynamic shape optimization. In Proceedings of the 31st Symposium on Naval Hydrodynamics, Monterey, CA, USA.

o D’Agostino, D., Serani, A., Campana, E.F. and Diez, M., 2017, September. Nonlinear methods for design-space dimensionality reduction in shape optimization. In 
International Workshop on Machine Learning, Optimization, and Big Data (pp. 121-132). Springer, Cham.
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Application: 3D Hydrofoil

https://www.youtube.com/watch?v=Y6dnOlE9sjk
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▪ Free form deformation (FFD) originally developed by Sederberg and Parry (1986) 

▪ FFD control points are moved and the modification is interpolated using trivariate
Bernstein polynomials

▪ The design space is bounded by +/- 20% mid-chord displacement of control points

▪ +/- 5 degrees of twist angle at the tip section is added to the design variables. Twist is 
interpolated along the span and is zero at the root section

Application: 3D Hydrofoil
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Shape modification by FFD

o Sederberg, T. W. and Parry, S. R., “Free-form deformation of solid geometric models,” ACM SIGGRAPH computer graphics, Vol. 20, No. 4, 1986, pp. 
151–160 

https://www.youtube.com/watch?v=MwtIj5QoKLE



Application: 3D Hydrofoil

▪ Four design spaces are compared, which have a different number of control points
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1 2
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o Volpi, S., Diez, M. and Stern, F., 2018. Multidisciplinary design optimization of a 3D composite hydrofoil via variable accuracy architecture. In 2018 
Multidisciplinary Analysis and Optimization Conference (p. 4173).



Application: 3D Hydrofoil

▪ MC sampling of the 
design space (uniform 
random distribution)
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o Volpi, S., Diez, M. and Stern, F., 2018. Multidisciplinary design optimization of a 3D composite hydrofoil via variable accuracy architecture. In 2018 
Multidisciplinary Analysis and Optimization Conference (p. 4173).



Application: 3D Hydrofoil
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▪ Increasing the number of FFD control points reduces the geometric variance of the design space (assuming equally 
defined design variable bounds for each space)

▪ The potentiality of the dimensionality reduction becomes very significant as the number of FFD control points 
increases

(1)

(2)

(3)

(4)

PCA eigenvalues (cumulative sum): design/geometric variability 

o Volpi, S., Diez, M. and Stern, F., 2018. Multidisciplinary design optimization of a 3D composite hydrofoil via variable accuracy architecture. In 2018 
Multidisciplinary Analysis and Optimization Conference (p. 4173).



Application: 3D Hydrofoil

Eigenfunctions: new basis for design space

(First 16 PCA modes for the design space 2)
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Application: High-Speed Catamaran

Littoral Surface Craft-Experimental LSC(X), developed by the Office of Naval 
Research and christened Sea Fighter (FSF 1)
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Application: High-Speed Catamaran
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Delft catamaran 372 hull-form optimization in calm water at Fr=0.5

Shape parameters

▪ Free-form deformation (FFD)
▪ 20 design variables
▪ 2 geometric constraint sets (design spaces)

o Diez M, Campana EF, Stern F (2015) Design-space dimensionality reduction in shape optimization by Karhunen–Loève expansion, Computer Methods in Applied Mechanics 
and Engineering 283, 1525–1544



Application: High-Speed Catamaran

▪ The original design space is sampled 
using a random uniform distribution 
of 10,000 hull-form designs

▪ Design space A: 4 variables are 
needed to retain the 95% of original 
geometric variance
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Design/geometric variability

Design space Dimensionality

Original 22

Reduced 4
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New basis for design space

Application: High-Speed Catamaran
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▪ Comparing to the original design, optimized designs 
slenderize the entire geometry while moving more 
volume to the bow and the stern (especially at the 
inner side)
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Application: High-Speed Catamaran
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Fr=0.15 Fr=0.20 Fr=0.25

Fr=0.30 Fr=0.35 Fr=0.40

Fr=0.45 Fr=0.50 Fr=0.55

Fr=0.60 Fr=0.65 Fr=0.70

Webinar

Application: High-Speed Catamaran



▪ EFD: 8.9% reduction at Fr = 
0.5; U%D small (<1%)

▪ CFD: 10.0% reduction; U%S = 
3.7% (original) and 2.6% 
(optimized)

▪ Error for reduction prediction 
E = 1.1%
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Application: High-Speed Catamaran



Simulation-Based Design Optimization
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Simulations and Uncertainty Quantification

▪ URANS/FE

▪ MC methods with metamodels

▪ Auto-covariance analysis

▪ Bootstrap methods
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No. of wave 

components, Nw 
Run time at model 

scale [s] 
No. of encounter 

waves 
No. of modal 

periods 
m0 

[mm2] 
E(m0) 

%Theory 

EFD 993 240 361 143 599 0.2 

CFD 50 50 88 30 571 -2.5 

 

o Diez, M., Broglia, R., Durante, D., Olivieri, A., Campana, E. and Stern, F., 
2017. Validation of Uncertainty Quantification Methods for High-Fidelity 
CFD of Ship Response in Irregular Waves. J. Verif. Valid. Uncert. (2018); doi: 
10.1115/1.404137.



Simulation-Based Design Optimization
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▪ Based on a simplified social model of a dolphin pod in 
search for food

▪ Formulated for unconstrained single-objective 
minimization and intended for SBD optimization 
problems with costly objective functions. 

▪ The novelty stems from formulating the global search 
by defining the pod dynamics as a spring-mass 
system subject to internal and external forces

▪ DPO is formulated considering the essential elements 
of the cetacean intelligence: 
✓ Congregation 
✓ Self-awareness
✓ Communication
✓ Memory

“Individual feeding may be enhanced by the presence of the 
group due to rapid and efficient information transfer 

concerning where, for example, the major concentration of 
prey is and what the extent of the prey  school may be.” 

(Würsig, Delphinid Foraging Strategies 2013)

Optimization Algorithm: Dolphin Pod Optimization

o Serani, A. and Diez, M., 2017, September. Dolphin pod optimization. In International 
Workshop on Machine Learning, Optimization, and Big Data (pp. 50-62). Springer, Cham.
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Simulation-Based Design Optimization
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▪ Standard RBF

• Power law

• Gaussian

• Multiquadric

• Inverse quadratic

• Inverse multiquadric

Kernel

Radial Basis Function (RBF) Metamodel
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unknown coefficients training points with associated

number of training points 



Stochastic Radial Basis Function (SRBF) Metamodel
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▪ Monte Carlo sampling of t is 
performed, providing a stochastic 
ensemble of metamodels

▪ It provides predictions as mean 
value and 95% uncertainty band

▪ Stochastic RBF

o Volpi, S., Diez, M., Gaul, N.J., Song, H., Iemma, U., Choi, K.K., Campana, E.F. and Stern, F., 2015. Development and validation of a dynamic metamodel based on stochastic radial basis 
functions and uncertainty quantification. Structural and Multidisciplinary Optimization, 51(2), pp.347-368.



▪ Adaptive exploration of 
design/operational spaces

▪ Focus on interesting regions and 
useful evaluations

▪ Sequential sampling procedure
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Adaptivity Through Sampling



Multi-fidelity metamodel

Extension to Two Fidelity Levels
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High-fidelity function

Low-fidelity function

Error function

o Serani A., Pellegrini R., Broglia R., Wackers J., Visonneau M., Diez M. (2019). Adaptive multi-fidelity sampling for CFD-based optimization via radial basis functions, submitted to  International 

Journal of Computational Fluid Dynamics, special issue on CFD-enabled Design Optimisation of Industrial Flows: Theory and Practice
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Adaptivity with Two Fidelity Levels

▪ Adaptive exploration of 
design/operational spaces

▪ Focus on interesting zones and 
useful evaluations

▪ Sequential sampling procedure

▪ Adaptive selection of data 
fidelity



Two-Fidelity Metamodel Block Diagram
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LF/HF computational cost ratio 



Effect of Computational Cost in Two-Fidelity Metamodel
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HF LFfidelity

o Serani A., Pellegrini R., Broglia R., Wackers J., Visonneau M., Diez M. (2019). Adaptive multi-fidelity sampling for CFD-based optimization via radial basis functions, submitted to  International 

Journal of Computational Fluid Dynamics, special issue on CFD-enabled Design Optimisation of Industrial Flows: Theory and Practice



Application: Two-fidelity Optimization of a SWATH
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▪ Objective: resistance 
reduction at Fr=0.49

▪ Solvers: RANSE and 
potential flow/BEM

▪ Computational cost 
ratio: 0.3

▪ N-fidelity approach: 
adaptive two-fidelity 
metamodel

▪ Sampling: maximum 
uncertainty based

▪ Metamodel: stochastic 
radial basis functions, 
providing prediction and 
associated uncertainty

Design variable 1 Design variable 2

Adaptive two-fidelity metamodel

Two-fidelity analysis

Figure from http://www.bluebird-electric.net/ 
SWASH_Submerged_Single_Hull_Active_Surface_Stabilization.htm

o Pellegrini, R., Serani, A., Broglia, R., Diez, M. and Harries, S., 2018. Resistance and Payload Optimization of a Sea Vehicle by Adaptive Multi-Fidelity Metamodeling. In 2018 AIAA/ASCE/AHS/ASC 
Structures, Structural Dynamics, and Materials Conference (p. 1904).



Generalization to N Fidelity Levels
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High-fidelity function

Low-fidelity function

additional-fidelity function

Error functions

N-fidelity metamodel

o Serani A., Pellegrini R., Broglia R., Wackers J., Visonneau M., Diez M. (2019). An Adaptive N-fidelity Metamodel 

for Design and Operational-Uncertainty Space Exploration of Complex Industrial Problems, to be presented at 

VIII International Conference on Computer Methods in Marine Engineering, Goteborg, Sweden



Application: Three-fidelity Optimization of a NACA Hydrofoil
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Adaptive three-fidelity metamodel
Number of high-fidelity evaluations to achieve optimum

▪ Objective: resistance 
reduction at CL=0.6

▪ Solvers: RANSE with adaptive 
grid refinement

▪ Computational cost ratio: 0.5 
and 0.3

▪ N-fidelity approach: adaptive 
three-fidelity metamodel

▪ Sampling: maximum 
uncertainty based

▪ Metamodel: stochastic radial 
basis functions, providing 
prediction and associated 
uncertainty

Fine grid Medium grid Coarse grid

o Serani A., Pellegrini R., Broglia R., Wackers J., Visonneau M., Diez M. (2019). An Adaptive N-fidelity Metamodel for Design and Operational-Uncertainty Space Exploration of Complex Industrial 

Problems, to be presented at VIII International Conference on Computer Methods in Marine Engineering, Goteborg, Sweden



Application: Three-fidelity Uncertainty Quantification of a RoPax Ferry
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▪ Objective: resistance 
reduction at Fr=0.295

▪ Solvers: RANSE with 
multi-grid acceleration

▪ Computational cost 
ratio: 0.125 and 0.0625

▪ N-fidelity approach: 
adaptive three-fidelity 
metamodel

▪ Sampling: maximum 
uncertainty based

▪ Metamodel: stochastic 
radial basis functions, 
providing prediction and 
associated uncertainty

Fine body grid

o Serani A., Pellegrini R., Broglia R., Wackers J., Visonneau M., Diez M. (2019). An Adaptive N-fidelity Metamodel for Design and Operational-Uncertainty Space Exploration of Complex Industrial 

Problems, to be presented at VIII International Conference on Computer Methods in Marine Engineering, Goteborg, Sweden

N-fidelity metamodel uncertainty for N=1, 2, and 3 from left to right



Closing remarks

▪ SBDO represents a viable paradigm shift for more efficient/safer ships and has a broad field of application (hull, propeller, ESD, etc.)

▪ Modularity and portability of tools is of interest to industries

▪ Extensions to

➢ Multidisciplinary (hydroelasticity/FSI; routing; life cycle cost/assessment; combined design and operation; virtual/augmented reality)

➢ More complex/realistic applications (self-propelled; manoeuvring; slamming in stochastic environment; autonomous/under-water vehicles; MDO)

➢ Multi-fidelity including experimental data (URANS/DES; multi-grid; linear/nonlinear FE)
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